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The wave drag coefficient is computed approximately for a nozzle containing a 
swirlingflowasafunctionofR;l, theinverseof theRossbynumber.WhenR;l < A, 
and R;1= A,, where A, denotes the nth zero of the Bessel function Jl, there is no 
wave in the flow and the wave drag is zero. The drag coefficient is found to be 
sub-divided into different regions between R;l = A, and with n = 1,2,3, . . . . 
When each A, is exceeded, the drag coefficient jumps from zero to a value which is 
one order higher than its values in the previous region (except in the case n = l), 
and then decreases to zero as R;l increases toward A,+l. Very high wave drag can 
be expected in flows of large swirl ratios. 

1. Introduction 
In  a previous work (Chow 1969) a problem was studied analytically concerning 

a swirling flow of an inviscid, incompressible fluid through an axisymmetric 
convergent-divergent nozzle. It was found that if the angular velocity of the flow 
is small compared with the axial velocity, the flow patterns up- and downstream 
from a contraction are symmetric. But when the swirl ratio exceeds a certain 
critical value, the flow becomes non-symmetric and waves appear downstream 
from the throat. These internal waves persist in the flow at higher swirl ratios 
except under special conditions when the flow becomes blocked by the con- 
traction. 

Associated with the downstream waves, there must be a drag acting on the 
nozzle. Fraenkel(l956) studied this problem but did not go any further after an 
expression for the drag was derived. The expression was in the form of a series, 
whose physical meaning can hardly be interpreted unless some numerical 
examples are given. 

In  the present work we will compute the wave drag of a nozzle of specified 
shape a t  different swirl ratios. Since the contour of the nozzle is to be constructed 
through an inverse method, it deviates considerably when the swirl ratio is 
changed. The curve for the drag so obtained is therefore an approximated one for 
a given nozzle. 
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2. The analytical model 
The same mathematical model used by Chow will be adopted here, which is 

described briefly as follows. Far upstream from the contraction, the tube has a 
constant radius R and the fluid, rotating at  a constant angular speed w, has a 
uniform axial velocity W along the positive z axis which coincides with the 
centre-line of the tube. The contraction is generated by superimposing on this 
uniform flow a distribution of ring vortices of strength f ( r )  over the range 
rl < r < R at the section z = 0. The resulting stream function, whose value and 
r derivatives are continuous a t  z = 0, is separated into two parts. For the flow 
upstream from the throat in the region z < 0, 

and for that downstream in the region 2 0, 

(2) 
pn and k, are defined respectively by the relations 

and 

p,R = ( A : - R L ~ ) ~  

k,R = (R,' - Az)a 
(3) 

(4) 

in which R, (=  W / 2 R w )  is the Rossby number whose inverse characterizes the 
swirl ratio, and A, is the nth zero of the Bessel function J1. The integer N is 
determined by comparing the magnitude of R, with the An's through the relation 

( 5 )  AN < IRrll < AN+,. 

In  the case N = 0, all the terms containing sine functions are omitted. The 
expressions for a, and b, were shown in the previous work corresponding to the 
chosen function 

Flow patterns at  different Rossby numbers were presented there for specified 
values of rl and Q, which describe the shape of the nozzle. 

The drag D can be obtained by computing the differences in pressure and 
axial momentum between a far upstream and a far downstream section. Upon 
use of the stream functions ( 1 )  and ( 2 ) ,  we obtain the drag coefficient 

which is defined as Dlip W2zi-R2. The expression is equivalent to that derived by 
Fraenkel. 

It shows that there is no drag when R;l < A,, since b, = 0 and waves do not 
appear in the flow at such low swirl ratios. When Rcl exceeds the value A, the 
drag becomes finite, and we like to compare C, at different swirl ratios for a 
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given nozzle. However, in using this inverse method it is impossible to generate 
the same nozzle shape, described by w*/Q WR2 = 1, at different Rossby numbers. 
It has been shown by the previous paper that the nozzle is symmetric about 
x = 0 when R;l 6 A,, and becomes more and more non-symmetric when R;l 
successively exceeds the 2,;s. In  the present work we will fix the throat radius at  
0.9 R and choose arbitrarily a contour shape at  a swirl ratio within the range 
A, < R;1 < A, as our reference. At any other ratio we adjust the values of rl and Q 
until the nozzle has the same throat radius and its shape becomes as close as 
possible to the reference one. 

When R;1 approaches a A, closely from below, the contour becomes elongated 
and deviates greatly from the desired shape, and the results in these regions will 
be omitted. When R;I = A, the flows up- and downstream from the throat are 
blocked. Under such a critical condition velocity distribution becomes identical 
along the tube, waves disappear, and wave drag vanishes. A slight increase in 
R;l over the value A, gives a regular nozzle shape and a finite drag coefficient. 

3. Results 
The mean nozzle contours for A, < R;l < A,+,, where n = 1 , 2  and 3, are 

plotted in figure 1. Within each range of R;1 there are small deviations about the 
mean shape. Increasing in R;1 causes the contour to lean more toward the 
upstream direction. 
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FIGURE 1. The mean nozzle contours for three regions of the swirl ratio. 

Figure 2 shows the plot of drag coefficient as a function of R;l. It jumps from 
zero to a finite value when R;1 passes the first critical value A,, and decreases 
continuously with further increase in R;,. After the value A, is passed, the drag 
jumps from zero to a value which is one order higher than those computed in the 

49 F L M  43 



770 C-Y.  Chow and Y-C. Lai 

previous range of the swirl ratio. A jump occurs again when R;1 exceeds A, to 
bring the magnitude of C, to another higher order. 

Concluded from the results obtained so far, we can expect that for still higher 
values of R;l, the drag coefficient will behave in a similar way, that is, its magni- 
tude jumps to a higher order after R;1 exceeds each critical value, and then 
tapers off toward zero. Thus a t  a large swirling ratio the nozzle may experience a 
wave drag which is far greater than the drag caused by viscosity. 
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FIGURE 2.  The wave drag coefficient as a function of swirl ratio. 

From the similarities between a rotating flow and a flow of a stratified fluid, we 
can anticipate that the drag caused by lee waves will have similar behaviour to 
that discussed here. 
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